A Multi-Classifier System for Off-Line Signature Verification Based on Dissimilarity Representation
نویسندگان
چکیده
Although widely used to reduce error rates of difficult pattern recognition problems, multiple classifier systems are not in widespread use in off-line signature verification. In this paper, a two-stage off-line signature verification system based on dissimilarity representation is proposed. In the first stage, a set of discrete HMMs trained with different number of states and/or different codebook sizes is used to calculate similarity measures that populate new feature vectors. In the second stage, these vectors are employed to train a SVM (or an ensemble of SVMs) that provides the final classification. Experiments performed by using a real-world signature verification database (with random, simple and skilled forgeries) indicate that the proposed system can significantly reduce the overall error rates, when compared to a traditional featurebased system using HMMs. Moreover, the use of ensemble of SVMs in the second stage can reduce individual error rates in up to 10%.
منابع مشابه
Multi-script Off-line Signature Verification: A Two Stage Approach
Signature identification and verification are of great importance in authentication systems. The purpose of this paper is to introduce an experimental contribution in the direction of multi-script off-line signature identification and verification using a novel technique involving off-line English, Hindi (Devnagari) and Bangla (Bengali) signatures. In the first evaluation stage of the proposed ...
متن کاملSignature Verification using Integrated Classifiers
This paper presents a new approach for off-line signature verification. The proposed system is based on global, grid, ink distribution and texture features. The Boosting algorithm is applied to train and integrate multiple classifiers, and the distance-based classifier used as the base classifier corresponding to each feature set. Adaptive threshold is associated with individuality. Experimenta...
متن کاملA new signature verification technique based on a two-stage neural network classifier
This paper presents a new technique for off-line signature recognition and verification. The proposed system is based on global, grid and texture features. For each one of these feature sets a special two stage Perceptron OCON (one-class-one-network) classification structure has been implemented. In the first stage, the classifier combines the decision results of the neural networks and the Euc...
متن کاملOff-Line Signature Verification by Local Granulometric Size Distributions
A fundamental problem in the field of off-line signature verification is the lack of a signature representation based on shape descriptors and pertinent features. The main difficulty lies in the local variability of the writing trace of the signature which is closely related to the identity of human beings. In this paper, we propose a new formalism for signature representation based on visual p...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010